

Lattice QCD developments in flavor physics

Ying Chen

Institute of High Energy Physics,
Chinese Academy of Sciences, China

Lepton Photon 2023, Melbourne, July 17, 2023,

Outline

- I. Introduction
- II. Heavy flavored multiquark states
- III. Charmonium(like) states and their decays
- IV. Summary and perspectives

I. Introduction

1. Lattice QCD formalism

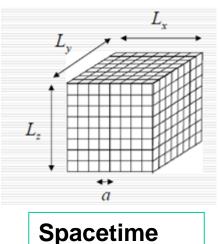
Green's functions

Path integral quantization on finite Euclidean spacetime lattices

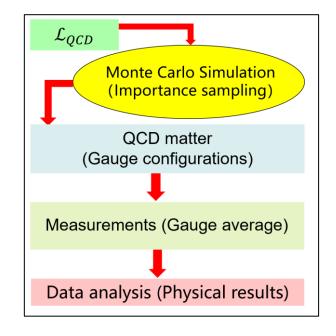
Field product

$$Z = \int DAD\psi D\overline{\psi} e^{iS[A,\psi,\overline{\psi}]} \to \int DU \det M[U] e^{-S_g[U]}$$

$$\langle \widehat{\mathcal{O}}[U,\psi,\overline{\psi}] \rangle = \frac{1}{Z} \int DU \det M[U] e^{-S_g[U]} \mathcal{O}[U]$$



discretization



- Very similar to a statistical physics system
- Monte Carlo simulation—importance sampling according to $\mathcal{P}[U] \propto \det M[U] e^{-S_g[U]}$

Gauge ensemble:
$$\{U_i(\text{spacetime}), i = 1, ..., N\} \implies \langle \widehat{\mathcal{O}}[U, \psi, \overline{\psi}] \rangle = \frac{1}{N} \sum_i \mathcal{O}[U_i] + O\left(\frac{1}{\sqrt{N}}\right)$$

2. LQCD developments in high precision flavor physics

FLAG Review 2021

http://flag.unibe.ch/2021

FLAG 2023/24

Submission form

Figures for

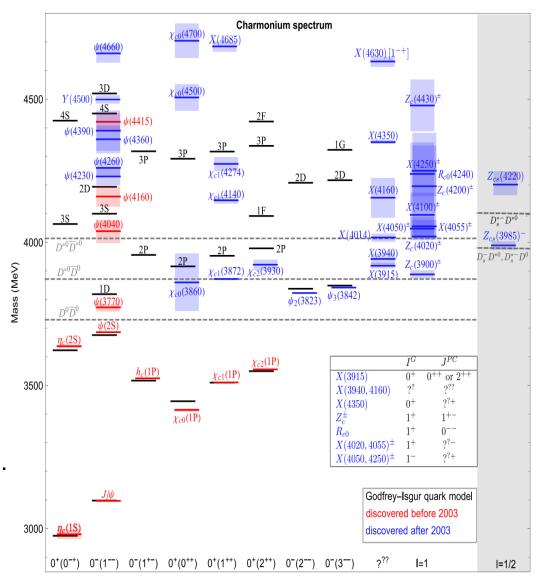
OIIII

The latest version of the FLAG 21 review as of February 2023 is accessible here. It contains updated sections as follows:

- · Quark masses: updated Feburary 2023
- $|V_{ud}|$ and $|V_{us}|$: updated Feburary 2023
- B-meson decay constants, mixing parameters, and form factors: updated February 2023
- Scale setting: updated Feburary 2023
- ✓ Quark masses (reaches 1% level, isospin breaking and QED effects)
- ✓ Leptonic and semileptonic kaon and pion decay (there are tensions for the first row unitarity.
- $|V_u|^2 = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9816(64)$
- ✓ Low-energy constants in chiral perturbation theory
- ✓ Kaon mixing (indirect CP violation $(\epsilon_K, K \to (\pi\pi)_I, B_K)$
- ✓ Charm hadron decay constants and form factors
- ✓ Botton hadron decays and mixings
- ✓ The strong coupling α_s
- ✓ Nucleon matrix elements
- Benefit from the well-controlled statistical and systematic uncertainties, high precision is achieved.
- These results are very relevant to the precision test of the Standard Model (SM) and the search for new physics beyond SM.

3. New hadron states that has heavy quarks

- Ever since the discovery of X(3872), a large number of charmium(-like) structures have been observed by various experiments (BESIII, BaBar, Belle, CDF, D0, ATLAS, CMS and LHCb).
- All of the XYZ states are above or at least in the vicinity of the open-charm thresholds, and are good candidates for hadron molecules.
- Apart from charmium-like states, LHCb observed several P_c states in $J/\psi p$ final states $P_c(4312), (4380), P_c(4440), P_c(4457)$
- In 2021, LHCb observed the first doubly charmed structure $T_{cc}^+(3875)$.
- More states will be coming.
- Their properties are worthy of a investigation in depth.
- Lattice QCD plays an important role, and are collaborative efforts along with phenomenological studies in this sector.



4. The methodology for studying hadron-hadron scattering in lattice QCD

State-of-art Approach——Lellouch-Lüscher's formalism

(see R. Briceno et al., Rev. Mod. Phys. 90 (2018) 025001 for a review).

$$\det\left[F^{-1}\left(\overrightarrow{P},E,L\right)+\mathcal{M}(E)\right]=0$$

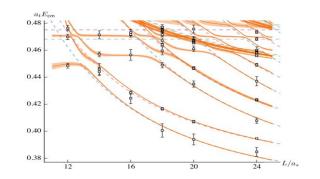
 $E_n(L)$: Eigen-energies of lattice Hamiltonian.

- Interpolation field operator set for a given J^{PC} \mathcal{O}_i : $\overline{q}_1 \Gamma q_2$ $[\overline{q}_1 \Gamma_1 q] [\overline{q} \Gamma_2 q_2]$ $[q_1^T \Gamma_1 q] [\overline{q} \Gamma_2 \overline{q}_2^T]$, ...
- **Correlation function matrix** Observables

$$C_{ij}(t) &= \left\langle \Omega \middle| \mathcal{O}_i(t) \mathcal{O}_j^+(0) \middle| \Omega \right\rangle$$
$$= \sum_{n} \left\langle \Omega \middle| \mathcal{O}_i \middle| n \right\rangle \left\langle n \middle| \mathcal{O}_j^+ \middle| \Omega \right\rangle e^{-E_n t}$$

All the energy levels $E_n(L)$ are discretized.

 $F(\vec{P}, E, L)$: Mathematically known function matrix in the channel space (the explicit expression omitted

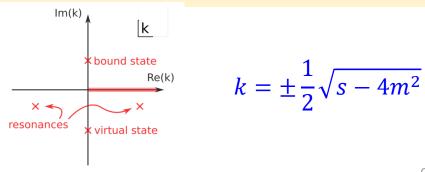


$\mathcal{M}(E)$: Scattering matrix.

Unitarity requires

$$\mathcal{M}_{ab}^{-1} = (\mathcal{K}^{-1})_{ab} - i\delta_{ab} \frac{2q_a^*}{E_{cm}}$$

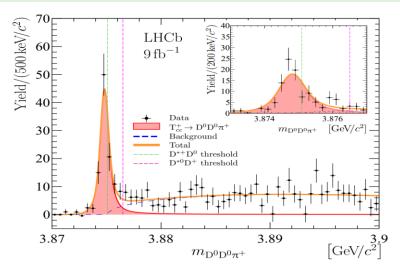
- \mathcal{K} is a real function of s for real energies above kinematic threshold.
- The pole singularities of $\mathcal{M}(s)$ in the complex s-plane correspond to bound states, virtual states, resonances, etc..



II. Heavy flavored multiquark states

1. Lattice studies of $T_{cc}^+(3875)$

LHCb discovered $T_{cc}^+(3875)$ in 2021 (LHCb, Nature Phys.18, 751 (2022), Nature Comm.13, 3551 (2022))



$$M_{T_{cc}} - (m_{D^0} + m_{D^{*+}}) = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}$$

$$\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$$

$$\Gamma_{BW}^{U} = 48 \pm 2_{-14}^{0} \ keV$$

Isospin: Only observed in DD^{*+} , therefore I=0

The minimum quark configuration: $cc\bar{u}\bar{d}$

- Spured extensive and intensive phemonenological investigations
- Likely a DD* hadronic molecule
- A relay race of lattice studies—make the things clearer!

Pole singularity: M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002

Dynamics underlying: S. Chen et al., Phys. Lett. B 833, 137391 (2022)

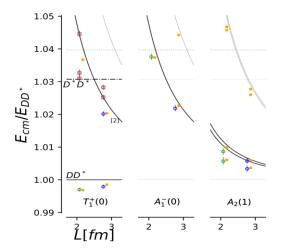
Interaction potential: Y. Lyu et al., arXiv:2302.04505 (hep-lat)

A. Pole singularity of $DD^*(I=0)$ scattering amplitude from lattice QCD

M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]	$a_{l=0}^{(J=1)}$ [fm]	$r_{l=0}^{(J=1)}$ [fm]	$\delta m_{T_{cc}} [{ m MeV}]$	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	` ′	2049(2)	3103(3)	1.04(29)	$0.96(^{+0.18}_{-0.20})$	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)				virtual bound st.
exp. $[2, 38]$	1864.85(5)	2010.26(5)	3068.6(1)	-7.15(51)	[-11.9(16.9),0]	-0.36(4)	bound st.

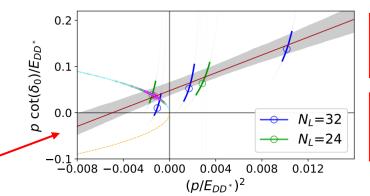
$$e^{2i\delta_l} = 1 + i \, 2\rho t_l, \qquad \rho = \frac{2p}{\sqrt{s}}, \qquad \sqrt{s} = E_{cm} = \sqrt{m_D^2 + p^2} + \sqrt{m_{D^*}^2 + p^2}$$



S-wave scattering amplitude:

$$t_0 = \frac{\sqrt{s}}{2} \frac{1}{p \cot \delta_0 - ip}$$

Effective range expansion (ERE): $p \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2}r_0p^2$



$$p = \pm i|p|$$

$$ip = \mp \sqrt{|p^2|},$$

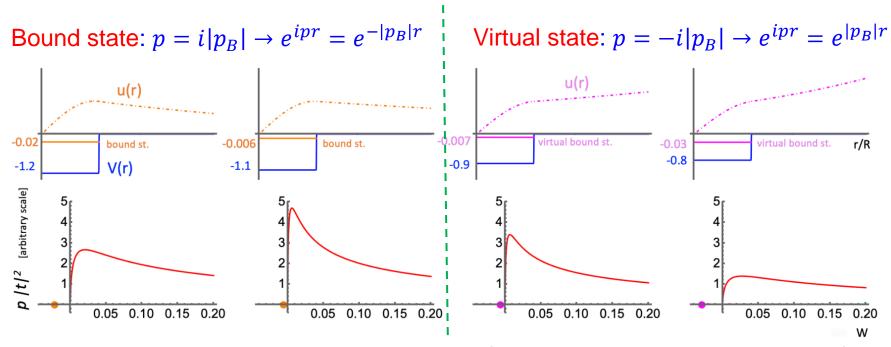
Pole condition: $p\cot\delta_0 = ip$

Lüscher's relation:

$$p \cot \delta_0(q^2) = \frac{2}{L\sqrt{\pi}} \mathcal{Z}_{00}(1, q^2) = \frac{1}{\pi L} \sum_{\vec{n} \in \mathbb{Z}_2} \frac{1}{\vec{n}^2 - q^2}, \qquad q = \frac{Lp}{2\pi}$$

$$\delta m_{T_{cc}} = {
m Re}(E_{cm}) - m_{D^0} - m_{D^{*+}} \ [{
m MeV}]$$
 $-20 \quad -15 \quad -10 \quad -5$
 at
 $m_{\pi} pprox 280 \ {
m MeV}$
 -0.03
 MeV

- The quark mass dependence of T_{cc} : when $m_{u/d}$ (m_{π}) decreases, a virtual state can develop into a bound state.
- $\delta m = E_{cm}^p E_{th}$ increasing m_{u/d} or decreasing m_c th. bound st. virt. bound st.
- This procedure can be illustrated qualitatively as follows:



S-wave scattering in a purely attractive potential V(r) (square well potential for instance):

even weaker the potential

weaker the potential shallower the bound state $i|p_B| \rightarrow -i|p_B|$

closer the pole to the threshold a virtual state

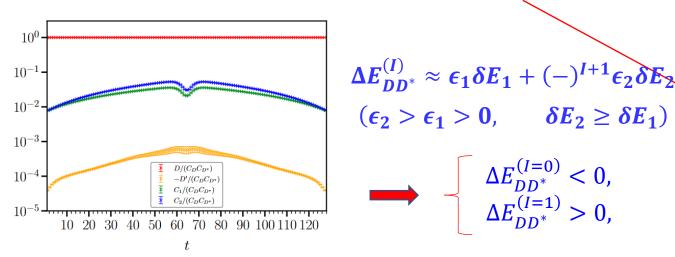
Either bound or virtual, it affects the cross-section and results in an enhancement near the threshold.

B. Investigation of the isospin-dependent interaction of DD^* scattering

(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

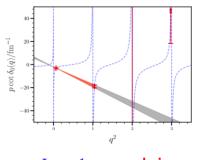
- DD* energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD* correlators

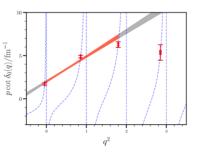
$$C_{DD^*}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')$$



 Initiatively interprets the underlying physics by analyzing the quark diagrams in lattice QCD calculations

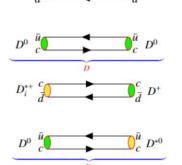
$$p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \mathcal{O}(p^4)$$

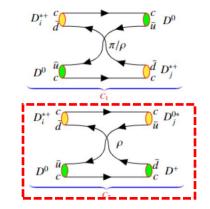




I = 1: repulsive

I = 0: attractive





Schematic quark diagrams

B. Investigation of the isospin-dependent interaction of DD^* scattering

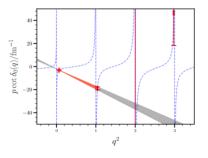
(S. Chen et al., Phys. Lett. B 833, 137391 (2022))

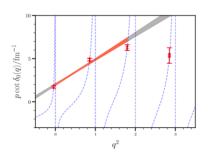
- DD* energies and scattering momenta can be derived precisely
- Single-channel Lüscher's formula applied
- $I = 1 DD^*$ is repulsive, $I = 0 DD^*$ is repulsive (sign of a_0)
- Quark diagrams (after Wick's contraction) contributing to DD* correlators

$$C_{DD^*}^{(I)}(t) = D + C_1 + (-)^{I+1}(C_2 + D')$$

- ✓ *D'* term is negligible.
- ✓ C_2 term is responsible for the energy difference of $DD^*(I=1)$ and $DD^*(I=0)$.
- ✓ C_2 term can be understood as the exchange of charged vector ρ meson, which provides attractive (repulsive) interaction for I = 0 (I = 1)
- ✓ This is in qualitative agreement with phenomenological studies (Dong et al. CTP73 (2021) 125201, Feijoo et al, PRD104(2021)114015)
- Initiatively interprets the underlying physics by analyzing the quark diagrams in lattice QCD calculations

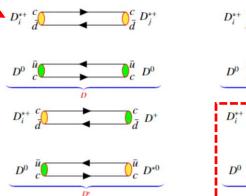
$$p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \mathcal{O}(p^4)$$

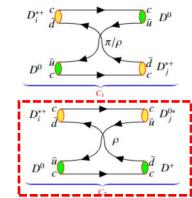




I = 1: repulsive

I = 0: attractive





Schematic quark diagrams

C. Hadron-hadron interaction potential——HALQCD approach (Y. Lyu et al., arXiv:2302.04505 (hep-lat))

- (2+1)-flavor QCD on the 96^4 lattice with $m_{\pi} = 146.4$ MeV, L=8.1 fm
- Calculate the correlation functions

Nambu-Bethe-Salpeter wave function

$$R(\vec{r},t) = e^{(m_{D^*} + m_{D})t} \sum_{\vec{x}} \langle 0 | D^*(\vec{x} + \vec{r},t) D(\vec{x},t) \bar{\mathcal{J}}(0) | 0 \rangle = \sum_{n} A_n \psi_n(\vec{r}) e^{-\Delta E_n t} + \cdots$$

• The function $R(\vec{r}, t)$ satisfies the Shrödinger-type equation

$$\left[\frac{1+3\delta^{2}}{8\mu}\partial_{t}^{2}-\partial_{t}-H_{0}+\cdots\right]R(\vec{r},t)=\int d\vec{r}'\,U(\vec{r},\vec{r}')R(\vec{r},t), \qquad H_{0}=-\frac{\nabla^{2}}{2\mu}, \qquad \mu=\frac{m_{D}*m_{D}}{m_{D^{*}}+m_{D}}, \qquad \delta=\frac{m_{D}*-m_{D}}{m_{D^{*}}+m_{D}}$$

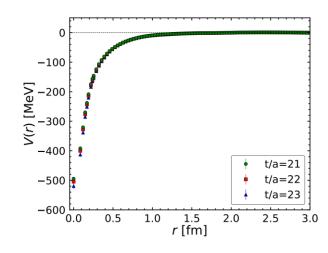
• Takes the leading term of derivative expansion of the non-local $U(\vec{r}, \vec{r}')$

$$U(\vec{r}, \vec{r}') \approx V(\vec{r})\delta(\vec{r} - \vec{r}'), \qquad V(r) = R^{-1}(\vec{r}, t) \left[\frac{1 + 3\delta^2}{8\mu} \partial_t^2 - \partial_t - H_0 + \cdots \right] R(\vec{r}, t)$$

- The DD^* potential in the $(I, J^P) = (0, 1^+)$ channel is attractive.
- Short range: attractive diquark-antidiquark $(\bar{u}\bar{d}-cc)$ Long range: two-pion exchange is favored:

$$V_{fit}^{B}(r; m_{\pi}) = \sum_{i=1,2} a_{i} e^{(-r/b_{i})^{2}} + a_{3} \left(\frac{1}{r} e^{-m_{\pi}r}\right)^{2} \cdots$$

• Different from phenomenological expectation that ρ -exchange dominates?



• Using the derived potential, the S-wave phase shifts δ_0 is obtained by solving the Schrödinger equation of DD^* system, which is put into the ERE

$$p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \mathcal{O}(p^4)$$

• Extrapolate to the physical m_{π} ,

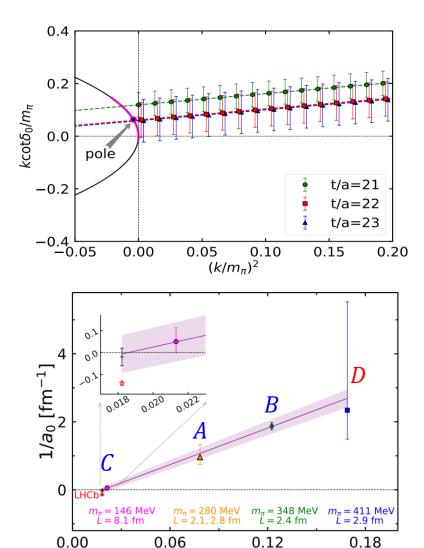
$$V_{fit}^B(r; m_\pi) \rightarrow V_{fit}^B\left(r; m_\pi^{\text{phys}}\right)$$

one gets

$m_{\pi} \; [\mathrm{MeV}]$	146.4	135.0
$1/a_0 [\text{fm}^{-1}]$	$0.05(5)\binom{+4}{-1}$	-0.02(4)
$r_{ m eff} { m [fm]}$	$1.14(6)\binom{+1}{-9}$	1.14(8)
$\kappa_{\mathrm{pole}} \; [\mathrm{MeV}]$	$-9(9)\begin{pmatrix} +1 \\ -8 \end{pmatrix}$	+3(8)
$E_{\text{pole}} [\text{keV}]$	$-45(77)\begin{pmatrix} +62\\ -99 \end{pmatrix}$	-10(37)

consistent with the large negative scattering length a_0 of a bound state ($k = i\kappa_{\text{pole}}$).

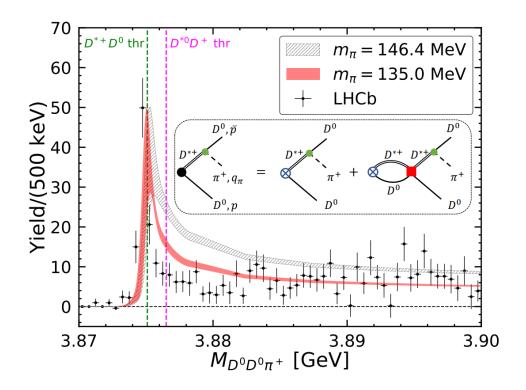
• This result is consistent with the extrapolated a_0 using the existing lattice results.



D: Y. Ikeda et al. (HALQCD) Phys. Lett. B 729 (2014) 84-90

 m_{π}^2 [GeV²]

- Fit to the $D^0D^0\pi^+$ mass spectrum of LHCb experimental data
 - ✓ The gray band: the theoretical obtained by using $V_{fit}^B(r; m_\pi)$ at $m_\pi = 146.4 \, \text{MeV}$
 - ✓ The red band: $D^0D^0\pi^+$ mass spectrum obtained by chiral extrapolated $V_{fit}^B(r;m_\pi)$ at $m_\pi=135.0$ MeV
 - ✓ Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.



To summarize,

- \checkmark The existing lattice results of $T_{cc}^+(3875)$ relevant studies are consistent with each other;
- ✓ These results support the existence of a DD^* bound state in the I=0 channel.
- ✓ The interaction potential study (C) suggests that the two-pion exchange dominates the long range interaction, while study (B) supports the charged- ρ exchange that provides an attractive interaction for I = 0 DD^* system near the threshold, as expected by phenomenological studies.

A. BB potential and $\bar{b}\bar{b}ud$ $\left(I(J^P)=0(0^+)\right)$ tetraquark bound states using lattice QCD

- Static anti-heavy quarks
- The $r_{\bar{p}\bar{p}}$ dependence of the *BB* system defines the potential.
- The Schrödinger equation is solved to give the binding energy.
- A bound state exists in the $I(J^P) = O((0,1)^+)$ channel

$$E_B = -90^{+43}_{-36} \text{ MeV}$$

of the $I(I^P) = 1(1^+)$ char

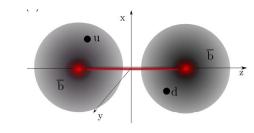
and no binding in the $I(J^P) = 1(1^+)$ channel.

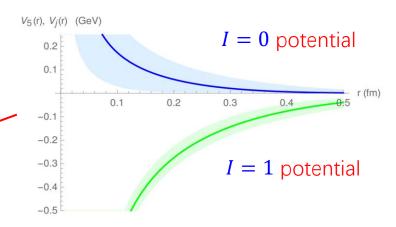
(P. Bicudo et al. Phys. Rev. D 93 (2016) 034507)

• A bound state exists in the $I(J^P) = O(1^+) DD^*$ and D^*D^* coupled channel

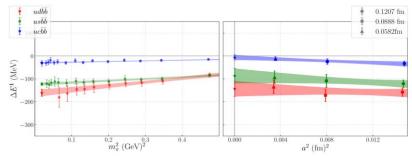
$$E_B = -59^{+30}_{-38} \text{ MeV}$$

(P. Bicudo et al. Phys. Rev. D 95 (2017) 034502)



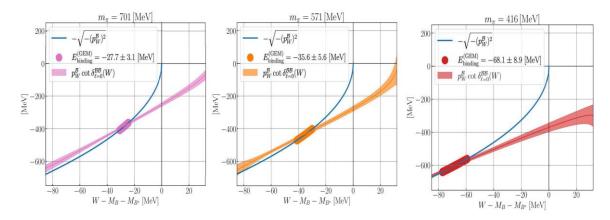


- B. $\bar{b}\bar{b}ud\left(I(J^P)=0(0^+)\right)$ tetraquark bound state hinted by negative binding energy
 - Chiral extrapolation
 - Continuum extrapolation



P. Junnarkar et al., Phys. Rev. D 99, 034507 (2019)

- C. $BB^* B^*B^*$ coupled channel potential and $\bar{b}\bar{b}ud$ $\left(I(J^P) = 0(1^+)\right)$ HALQCD formalism (S. Aoki and T. Aoki, PoS LATTICE2022, 049 (2023))
- Calculate the NBS wave function to derive the potential of $BB^* B^*B^*$ coupled channel potential.
- Solve the Lippmann-Schwinger equation to get the scattering phase of the *BB** single channel.

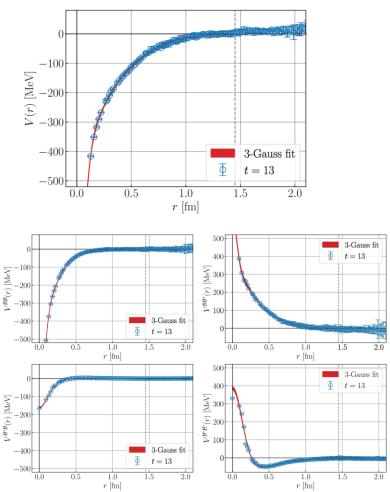


• The linear chiral extrapolation of the binding energy in m_{π}^2 gives

$$E_B^{\text{single}} = -154.8 \pm 17.2 \,\text{MeV},$$

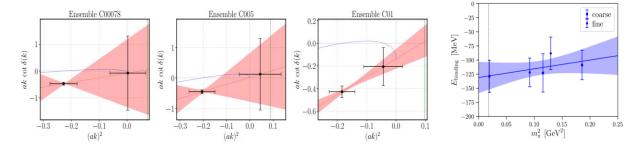
 $E_B^{\text{couple}} = -83.0 \pm 10.2 \,\text{MeV}$

Corroborate the previous lattice results.



D. $\bar{b}\bar{b}qq'$ (1⁺) systems explored in the Lellouch-Lüscher formalism

• For the $\bar{b}\bar{b}ud$ (0(1⁺)) system, phase shifts $\delta_0(k)$ are calculated at five m_{π} values.



All the cases give negative E_B , which are extrapolated to the value at the physical m_{π} :

$$E_B = -128 \pm 24 \pm 10 \text{ MeV}$$

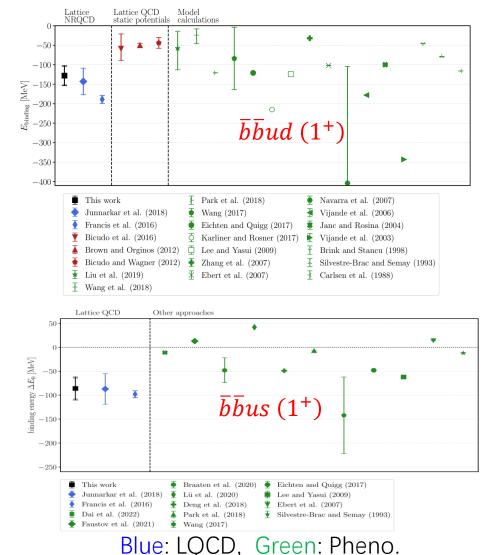
(L. Leskovec et al. Phys. Rev. D 100 (2019) 014503)

Clear evidence for a b̄bus (1+) tetraquark:

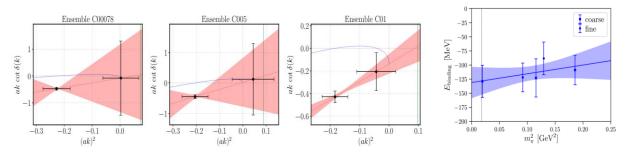
$$E_{R} = -86 \pm 22 \pm 10 \text{ MeV}$$

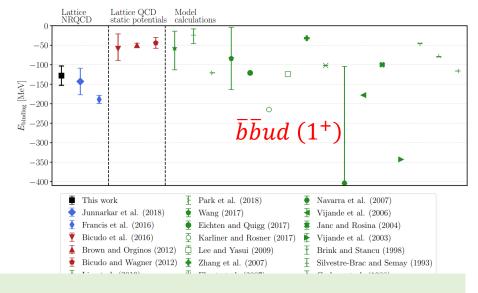
but strong discrepancies, even on the qualitive level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)



- D. $\bar{b}\bar{b}qq'$ (1⁺) systems explored in the Lellouche-Luescher formalism
- For the $\bar{b}\bar{b}ud$ (0(1⁺)) system, phase shifts $\delta_0(k)$ are calculated at five m_π values.





To summarize:

- ✓ All the existing lattice QCD studies indicate the existence of $T_{bb}(0(1^+))$
- ✓ However, the predicted banding energy E_B varys in the range (-40) (-130) MeV.
- \checkmark The absolute value $|E_B|$ is quite larger than that of $T_{cc}^+(3875)$.

$$E_B = -86 \pm 22 \pm 10 \text{ MeV}$$

but strong discrepancies, even on the qualitive level, between non-lattice results.

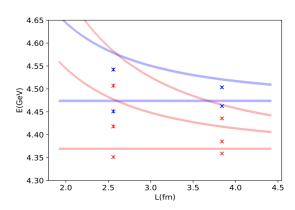
(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

Blue: LQCD, Green: Pheno.

3. P_c states and $\Sigma_c D(D^*)$ scatterings (H. Xing et al., arXiv:2210.08555)

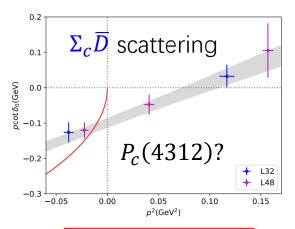
- LHCb observed several P_c states in $J/\psi p$ final state $P_c(4312)$, $P_c(4380)$, $P_c(4440)$, $P_c(4457)$ which must have the minimal quark configuration $uudc\bar{c}$.
- The $J^P = \frac{1}{2} \Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ scatterings are investigated via the Leuscher's method:

$$p \cot \delta_0(p(E)) = \frac{2}{L\sqrt{\pi}} Z_{00}(1; q^2(E)) \qquad p \cot \delta_0(p) = \frac{1}{a_0} + \frac{1}{2} r p^2 \quad (ERE)$$

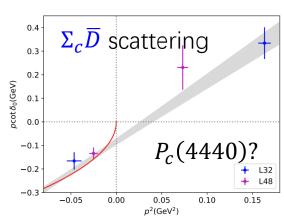


✓ Points: $E_n(L)$ $Σ_c \overline{D}$ (red) and $Σ_c \overline{D}^*$ (blue)

✓ Curves: $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ free energies.



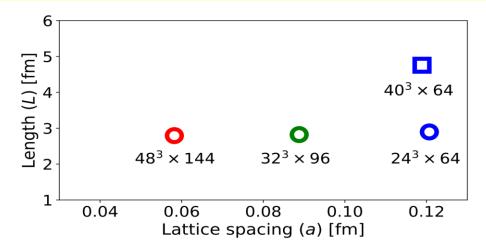
 $a_0(\Sigma_c \bar{D}) = -2.0(3)(5) \text{fm},$ $r_0(\Sigma_c \bar{D}) = 0.46(6)(17) \text{fm},$ $E_B(\Sigma_c \bar{D}) = 6(2)(2) \text{MeV},$

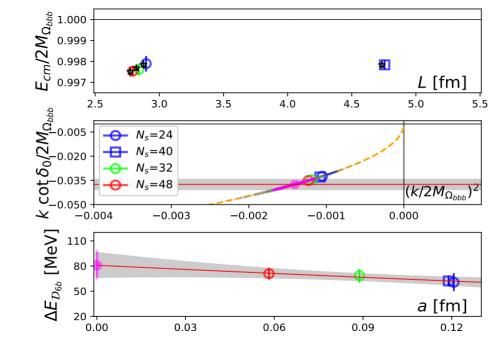


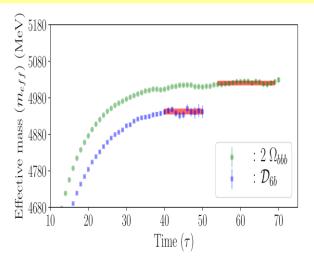
 $a_0(\Sigma_c \bar{D}^*) = -2.3(5)(1) \text{fm},$ $r_0(\Sigma_c \bar{D}^*) = 1.01(8)(10) \text{fm},$ $E_B(\Sigma_c \bar{D}^*) = 7(3)(1) \text{MeV},$

• Comment: The $J/\psi p - \Sigma_c D^{(*)}$ coupled channel effects have not been considered. They can be important, since P_c states are observed in the $J/\psi p$ invariant mass spectrum.

3. Dibaryon $\Omega_{hhh}\Omega_{hhh}$ from lattice QCD (N. Mathur et al., Phys. Rev. Lett. 130 (2023) 111901)







Ensemble	ΔE	Ensemble	ΔE
$24^{3} \times 64$	-61(11)	$40^{3} \times 64$	-62(7)
$32^3 \times 96$	-68(9)	$48^{3} \times 144$	-71(7)

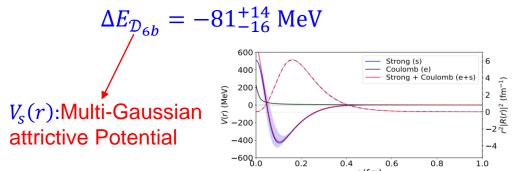
TABLE I. Energy difference $\Delta E = M_{\mathcal{D}_{6b}} - 2M_{\Omega_{bbb}}$ in MeV on different ensembles.

Continuum extrapolation

$$k \cot \delta_0 = -\frac{1}{a_0^{(0)}} + a_0^{(1)}a$$

$$a_0^{(0)} = 0.18^{+0.02}_{-0.02} \text{ fm}$$

$$a_0^{(0)} = 0.18_{-0.02}^{+0.02} \text{ fm}, \qquad a_0^{(1)} = -0.18_{-0.11}^{+0.18} \text{ fm}^2$$



r (fm)

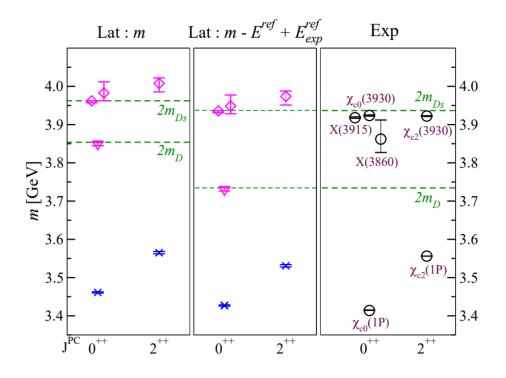
Radial distribtuion

III. Charmonium(like) states and their decays

1. $J^{PC} = (0,2)^{++}$ charmoniumlike resonances in coupled $D\overline{D}$ and $D_S\overline{D}_S$ scattering

(S. Prelovsek et al., JHEP 06 (2021) 035)

- Relevant to X(3860), X(3930) and X(3915), which are near $D\overline{D}$ and $D_S\overline{D}_S$ thresholds.
- The operator set includes $\bar{c}c$ operators and $(D\bar{D}, D_s\bar{D}_s)$ operators with different relative momenta.
- Lellouche-Luescher formalism is implemented.
 - ✓ A 0^{++} shallow bound state ($E_B \sim -4 \text{ MeV}$) is observed right below the $D\overline{D}$ threshold.
 - ✓ A narrow resonance appears just below the $D_s\overline{D}_s$ threshold, which may have connections with $\chi_{c0}(3930)$ and $\chi_{c0}(3915)$
 - ✓ Consistent with the trend of evolution from a near-threshold virtual state into a loosely bound state.
 - ✓ The single channel analysis of $L = 2 D\overline{D}$ scattering find a 2⁺⁺ resonance, whose properties are consistent with χ_{c2} (3930).



2. Decays of charmoniumlike 1^{-+} hybrid η_{c1} (C. Shi et al., arXiv: 2306.12884 (hep-lat))

- There exist candidates for light 1^{-+} hybrids, such as $\pi_1(1600)$ and $\eta_1(1855)$.
- The charmonium like counterpart η_{c1} of η_1 is expected. Lattice QCD predicts $m_{\eta_{c1}} \sim 4.2 4.4$ GeV.
- Two body decay modes of η_{c1} : $D_1\overline{D}$, $D^*\overline{D}$, $D^*\overline{D}^*$, $\chi_{c1}\eta(\eta')$, $\eta_c\eta(\eta')$, $J/\psi\omega(\phi)$
- The first lattice QCD calculation of the partial widths of these decays is presented.

Lattice methodology (C. McNeile & C. Michael, Phys. Lett. B 556 (2003) 177)

For the two-body decay $\eta_{c1} \to AB$, in the space spanned by $|\eta_{c1}\rangle$ and $|AB\rangle$ $(m_{\eta_{c1}} > E_{AB})$

$$|\eta_{c1}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $|AB\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\widehat{H} = \begin{pmatrix} m_{\eta_{c1}} & x \\ x & E_{AB} \end{pmatrix}$ $\widehat{T}(a) = e^{-a\widehat{H}} = e^{-a\overline{E}} \begin{pmatrix} e^{-a\Delta/2} & ax \\ ax & e^{a\Delta/2} \end{pmatrix}$ ne transition takes place at any t' between 0 and t : $\overline{E} = \frac{m_{\eta_{c1}} + E_{AB}}{2}$, $\Delta = m_{\eta_{c1}} - E_{AB}$

The transition takes place at any t' between 0 and t:

$$\begin{array}{ccc}
t & t' & 0 \\
AB & \langle AB | \widehat{H} | \eta_{c1} \rangle & \eta_{c1} \\
&= ax
\end{array}$$

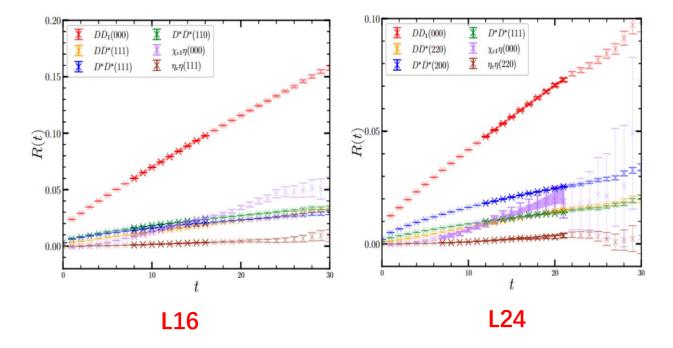
$$\langle \Omega | \mathcal{O}_{AB} | \eta_{c1} \rangle \approx 0 \qquad \langle \Omega | \mathcal{O}_{\eta_{c1}} | AB \rangle \approx 0$$

$$\frac{\mathcal{C}_{\eta_{c1},AB}(t)}{\sqrt{\mathcal{C}_{\eta_{c1}}(t)\mathcal{C}_{A}(t)\mathcal{C}_{B}(t)}} \rightarrow -ax \ t \left(1 + \frac{1}{24} (a\Delta t)^{2} \right)$$

Amplitudes for $\eta_{c1} \rightarrow AB$ from the Lagrangian

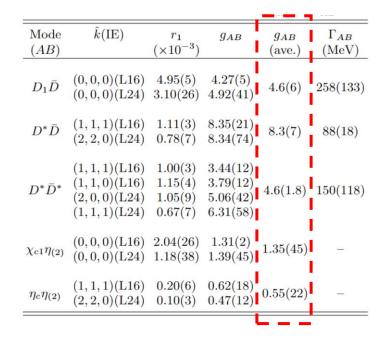
IE	$N_s^3 \times N_t$	β	$a_t^{-1}(\text{GeV})$	ξ	$m_{\pi}({ m MeV})$	N_V	$N_{ m cfg}$
L16	$16^3 \times 128$	2.0	6.894(51)	~ 5.3	~ 350	70	708
L24	$24^3\times192$	2.0	6.894(51)	~ 5.3	~ 350	160	171

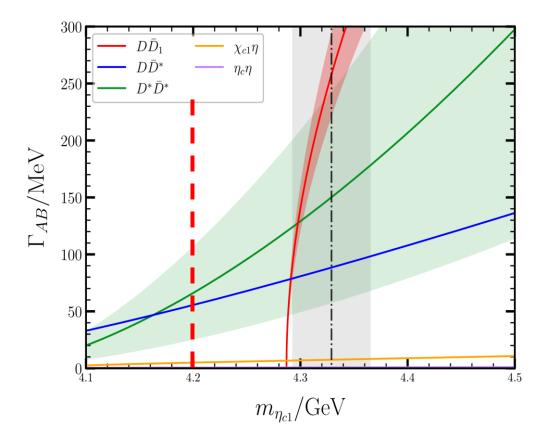
$$\frac{\mathcal{C}_{\eta_{c1},AB}(t)}{\sqrt{\mathcal{C}_{\eta_{c1}}(t)\mathcal{C}_{A}(t)\mathcal{C}_{B}(t)}} \to -(ax) t \left(1 + \frac{1}{24} (a\Delta t)^{2}\right)$$



$$\begin{split} x_{AP}^{\lambda'\lambda} = & g_{AP} m_{\eta_{c1}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \vec{\epsilon}_{\lambda'}^{\ *}(\vec{k}), \\ x_{PP}^{\lambda} = & 2g_{PP} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \vec{k}, \\ x_{D^{*}\bar{D}}^{\lambda'\lambda} = & g_{D^{*}\bar{D}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot (\vec{\epsilon}_{\lambda'}^{\ *}(\vec{k}) \times \vec{k}), \\ x_{D^{*}\bar{D}^{*}}^{\lambda'\lambda''\lambda} = & 2g_{D^{*}\bar{D}^{*}} \vec{\epsilon}_{\lambda}(\vec{0}) \cdot \left(\vec{k} \times \left[\vec{\epsilon}_{\lambda'}^{\ *}(\vec{k}) \times \vec{\epsilon}_{\lambda''}^{\ *}(-\vec{k})\right]\right) \end{split}$$

Efffective couplings g_{AB} are derived as follows:





The $m_{\eta_{c1}}$ -dependence of partial decay widths

$$\left| \mathbf{D}^* \overline{\mathbf{D}}^* \right\rangle_{(C=+)}^{(I=0)} = \frac{1}{\sqrt{2}} \left(\left| \mathbf{D}^{*+} \mathbf{D}^{*-} \right\rangle + \left| \mathbf{D}^{0*} \overline{\mathbf{D}}^{0*} \right\rangle \right)_{(L=1)}^{(S=1)}$$

$$L + S = \text{even}$$

• For $m_{\eta_{c1}} = 4329(36)$ MeV, we have

$$\Gamma_{D_1 \overline{D}} = 258(133) \text{ MeV}$$
 $\Gamma_{D^* \overline{D}^*} = 150(118) \text{ MeV}$
 $\Gamma_{D^* \overline{D}^*} = 88(18) \text{ MeV}$

$$\Gamma_{\chi_{c_1} \eta} = \sin^2 \theta \cdot 44(29) \text{ MeV}$$

$$\Gamma_{\eta_c \eta'} = \cos^2 \theta \cdot 0.93(77) \text{ MeV}$$

- Given the mass above, η_{c1} seems too wide to be identified easily in experiments.
- However, $\Gamma_{\eta_{c1}}$ is very sensitive to $m_{\eta_{c1}}$.
- If $m_{\eta_{c1}} \sim 4.2$ GeV, then $\Gamma_{\eta_{c1}} \sim 100$ MeV. The dominant decay channels are $D^*\overline{D}$ and $D^*\overline{D}^*$.
- Especially for $D^*\overline{D}^*$, the measurement of the polarization of D^* and \overline{D}^* will help distinguish a 1^{-+} states from 1^{--} states.
- It is suggested that LHCb, BelleII and BESIII to search for η_{c1} in $D^*\overline{D}$ and $D^*\overline{D}^*$ systems!

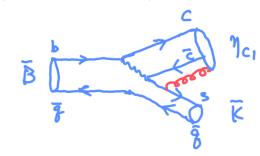
 η_{c1} production on e^+e^- collider $e^+e^- \rightarrow \psi(nS) \rightarrow \gamma \eta_{c1}$

$$e^+e^- \rightarrow \psi(nS) \rightarrow \gamma \eta_{c1}$$

$$(\psi(4415) \ etc.)$$

 η_{c1} production in B meson decays (LHCb and Belle II)

$$B \to \overline{K}X$$
, $X = X(3872), Z_c(4430), Z_c(3900)$, etc.



 η_{c1} decay modes

Flux-tube model selection rules:

- 1) Modes of two S-wave mesons are suppressed, SP-modes are favored.
- 2) Modes of two identical mesons are prohibited.

$$\langle AB|H_I|H\rangle \propto \int d^3\vec{r} \ (\phi_H(\vec{r})\cdots) \int_0^1 d\xi \cos(\xi\pi) \ \phi_A(\xi\vec{r})\phi_B \big((1-\xi)\vec{r}\big)$$
(P. Page et al., Phys. Rev. D 59 (1999) 034016)

But these rules for η_{c1} decys are not supported by the lattice calculation.

V. Summary

- Lattice QCD makes a rapid progress in the study of heavy flavor spectroscopy.
- Multiquark states are hot topics of lattice QCD studies.
- The existing lattice QCD results relevant to $T_{cc}^+(3875)$ are consistent with each other and support the existence of a shallow $DD^*(I=0)$ bound state.
- Similar studies are extended to the beauty counterpart T_{bb} of T_{cc} , and suggest the existence of a (deeply) bound $I(J^P) = O(1^+) BB^*$ state.
- A deeply bound dibaryon $\Omega_{bbb}\Omega_{bbb}$ is predicted.
- There are also developments in the study of charmoniumlike resonance.
- The decay properties of charmoniumlike hybrid η_{c1} are predicted by lattice QCD.
- More interesting works is underway.

Thank you for your Attention!