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1.  Lattice QCD  formalism

• Path integral quantization on finite Euclidean spacetime lattices

𝒁 = න𝑫𝑨𝑫𝝍𝑫ഥ𝝍𝒆𝒊𝑺 𝑨,𝝍,ഥ𝝍 → න𝑫𝑼𝐝𝐞𝐭𝑴[𝑼] 𝒆−𝑺𝒈[𝑼]

෡𝓞 𝑼,𝝍, ഥ𝝍 =
𝟏

𝒁
න𝑫𝑼 𝐝𝐞𝐭𝑴[𝑼] 𝒆−𝑺𝒈[𝑼] 𝓞[𝑼]

• Very similar to a statistical physics system

• Monte Carlo simulation——importance sampling according to 𝓟 𝑼 ∝ 𝐝𝐞𝐭𝑴 𝑼 𝒆−𝑺𝒈 𝑼

Green’s functions Field product Spacetime 

discretization

Gauge ensemble:  {𝑼𝒊 𝐬𝐩𝐚𝐜𝐞𝐭𝐢𝐦𝐞 , 𝒊 = 𝟏,… ,𝑵} ෡𝓞 𝑼,𝝍, ഥ𝝍 =
𝟏

𝑵
෍

𝒊

𝒪 𝑼𝒊 + 𝑶
𝟏

𝑵

I. Introduction



2. LQCD developments in high precision flavor physics

✓ Quark masses (reaches 1% level, isospin breaking and QED effects )

✓ Leptonic and semileptonic kaon and pion decay (there are tensions for the first row unitarity.

✓ 𝑉𝑢
2 = 𝑉𝑢𝑑

2 + 𝑉𝑢𝑠
2 + 𝑉𝑢𝑏

2 = 0.9816(64)
✓ Low-energy constants in chiral perturbation theory 
✓ Kaon mixing (indirect CP violation (𝜖𝐾， 𝐾 → 𝜋𝜋 𝐼, 𝐵𝐾)

✓ Charm hadron decay constants and form factors 

✓ Botton hadron decays and mixings 

✓ The strong coupling 𝛼𝑠
✓ Nucleon matrix elements 

• Benefit from the well-controlled statistical and systematic uncertainties, high precision is achieved. 

• These results are very relevant to the precision test of the Standard Model (SM) and the search for 

new physics beyond SM.  

http://flag.unibe.ch/2021
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3. New hadron states that has heavy quarks

• Ever since the discovery of X(3872), a large 

number of charmium(-like) structures

have been observed by various experiments

(BESIII, BaBar, Belle, CDF, D0, ATLAS, CMS and

LHCb).

• All of the XYZ states are above or at least 

in the vicinity of the open-charm thresholds, 

and are good candidates for hadron molecules.

• Apart from charmium-like states, LHCb observed 

several 𝑃𝑐 states in 𝐽/𝜓𝑝 final states

𝑃𝑐 4312 , 4380 , 𝑃𝑐 4440 , 𝑃𝑐(4457)
• In 2021, LHCb observed the first doubly charmed 

structure 𝑇𝑐𝑐
+(3875).

• More states will be coming.

• Their properties are worthy of a investigation in depth. 

• Lattice QCD plays an important role, and are 

collaborative efforts along with phenomenological

studies in this sector. 
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4. The methodology for studying hadron-hadron scattering in lattice QCD

• Interpolation field operator set for a given 𝑱𝑷𝑪

𝓞𝒊: ഥ𝒒𝟏𝚪𝒒𝟐 ഥ𝒒𝟏𝚪𝟏𝒒 ഥ𝒒𝚪𝟐𝒒𝟐 𝒒𝟏
𝑻𝚪𝟏𝒒 ഥ𝒒𝚪𝟐ഥ𝒒𝟐

𝑻 , …

• Correlation function matrix —— Observables 

𝑪𝒊𝒋 𝒕 & = 𝛀 𝓞𝒊 𝒕 𝓞𝒋
+ 𝟎 𝛀

=෍

𝒏

𝛀 𝓞𝒊 𝒏 𝒏 𝓞𝒋
+ 𝛀 𝒆−𝑬𝒏𝒕

All the energy levels 𝑬𝒏(𝑳) are discretized. 

State-of-art Approach——Lellouch-Lüscher’s formalism
(see R. Briceno et al., Rev. Mod. Phys. 90 (2018) 025001 for a review). 

𝐝𝐞𝐭 𝑭−𝟏 𝑷, 𝑬, 𝑳 +𝓜 𝑬 = 𝟎

𝐸𝑛 𝐿 : Eigen-energies of lattice Hamiltonian. 

𝐹 𝑃, 𝐸, 𝐿 : Mathematically known function matrix

in the channel space (the explicit expression omitted

• Unitarity requires

ℳ𝑎𝑏
−1 = 𝒦−1

𝑎𝑏 − 𝑖𝛿𝑎𝑏
2𝑞𝑎

∗

𝐸𝑐𝑚

• 𝒦 is a real function of 𝑠 for real 

energies above kinematic threshold. 

• The pole singularities of ℳ(𝑠) in the 

complex 𝑠-plane correspond to bound 

states, virtual states, resonances, etc..  

𝑘 = ±
1

2
𝑠 − 4𝑚2

ℳ 𝐸 : Scattering matrix. 
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1. Lattice studies of 𝑇𝑐𝑐
+(3875)

LHCb discovered 𝑇𝑐𝑐
+(3875) in 2021 (LHCb, Nature Phys.18, 751 (2022), Nature Comm.13, 3551 (2022))

𝑀𝑇𝑐𝑐 − 𝑚𝐷0 +𝑚𝐷∗+ = −273 ± 61 ± 5−14
+11 keV

Γ𝐵𝑊 = 410 ± 165 ± 43−38
+18 keV

Γ𝐵𝑊
𝑈 = 48 ± 2−14

0 𝑘𝑒𝑉

Isospin：Only observed in 𝐷𝐷∗+, therefore 𝐼 = 0

The minimum quark configuration：𝑐𝑐ത𝑢 ҧ𝑑

• Spured extensive and intensive phemonenological investigations

• Likely a 𝐷𝐷∗ hadronic molecule

• A relay race of lattice studies——make the things clearer! 

Pole singularity:          M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002

Dynamics underlying: S. Chen et al., Phys. Lett. B 833, 137391 (2022)

Interaction potential:   Y. Lyu et al., arXiv:2302.04505 (hep-lat) 

II. Heavy flavored multiquark states 



A.  Pole singularity of 𝐷𝐷∗(𝐼 = 0) scattering amplitude from lattice QCD
M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129 (2022) 032002 

𝑒2𝑖𝛿𝑙 = 1 + 𝑖 2𝜌𝑡𝑙 , 𝜌 =
2𝑝

𝑠
,

Effective range expansion (ERE): 

𝑡0 =
𝑠

2

1

𝑝cot 𝛿0 − 𝑖𝑝

𝑝 cot 𝛿0 =
1

𝑎0
+
1

2
𝑟0𝑝

2

Lüscher’s relation:  

𝑝 cot𝛿0 𝑞2 =
2

𝐿 𝜋
𝒵00 1, 𝑞2 =

1

𝜋𝐿
෍

𝑛∈𝑍3

1

𝑛2 − 𝑞2
, 𝑞 =

𝐿𝑝

2𝜋

𝑝 = ±𝑖|𝑝|

𝑖𝑝 = ∓ |𝑝2|,

𝑠 = 𝐸𝑐𝑚 = 𝑚𝐷
2 + 𝑝2 + 𝑚𝐷∗

2 + 𝑝2
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S-wave scattering amplitude:

Pole condition:
𝑝cot𝛿0 = 𝑖𝑝



• The quark mass dependence of 𝑇𝑐𝑐: when 𝑚 Τ𝑢 𝑑 (𝑚𝜋)

decreases, a virtual state can develop into a bound state.

• This procedure can be illustrated qualitatively as follows:

9

S-wave scattering in a purely attractive potential 𝑉(𝑟) (square well potential for instance):

weaker the potential              shallower the bound state              closer the pole to the threshold

even weaker the potential                       𝑖 𝑝𝐵 → −𝑖|𝑝𝐵| a virtual state 

Either bound or virtual,  it affects the cross-section and results in an enhancement near the threshold.    

Bound state: 𝑝 = 𝑖 𝑝𝐵 → 𝑒𝑖𝑝𝑟 = 𝑒− 𝑝𝐵 𝑟 Virtual state: 𝑝 = −𝑖 𝑝𝐵 → 𝑒𝑖𝑝𝑟 = 𝑒 𝑝𝐵 𝑟

𝑉 𝑟 ∝ −
1

𝑟
𝑒−𝑀𝑟



• 𝐷𝐷∗ energies and scattering momenta can be derived precisely

• Single-channel Lüscher’s formula applied

• 𝐼 = 1 𝐷𝐷∗ is repulsive,  𝐼 = 0 𝐷𝐷∗ is repulsive (sign of 𝑎0)

• Quark diagrams (after Wick’s contraction) contributing to 𝐷𝐷∗

correlators

𝐶𝐷𝐷∗
𝐼

𝑡 = 𝐷 + 𝐶1 + − 𝐼+1 𝐶2 + 𝐷′

• Initiatively interprets the underlying physics by analyzing the 

quark diagrams in lattice QCD calculations

B. Investigation of the isospin-dependent interaction of 𝐷𝐷∗ scattering 
(S. Chen et al., Phys. Lett. B 833, 137391 (2022) )

𝒑𝐜𝐨𝐭 𝜹𝟎 𝒑 =
𝟏

𝒂𝟎
+
𝟏

𝟐
𝒓𝟎𝒑

𝟐 + 𝓞 𝒑𝟒

𝐼 = 0: attractive𝐼 = 1: repulsive

Schematic quark diagrams
10

𝚫𝑬𝑫𝑫∗
𝑰

≈ 𝝐𝟏𝜹𝑬𝟏 + − 𝑰+𝟏𝝐𝟐𝜹𝑬𝟐

𝝐𝟐 > 𝝐𝟏 > 𝟎, 𝜹𝑬𝟐 ≥ 𝜹𝑬𝟏

Δ𝐸𝐷𝐷∗
𝐼=0

< 0,

Δ𝐸𝐷𝐷∗
𝐼=1

> 0,



• 𝐷𝐷∗ energies and scattering momenta can be derived precisely

• Single-channel Lüscher’s formula applied

• 𝐼 = 1 𝐷𝐷∗ is repulsive,  𝐼 = 0 𝐷𝐷∗ is repulsive (sign of 𝑎0)

• Quark diagrams (after Wick’s contraction) contributing to 𝐷𝐷∗

correlators

𝐶𝐷𝐷∗
𝐼

𝑡 = 𝐷 + 𝐶1 + − 𝐼+1 𝐶2 + 𝐷′

• Initiatively interprets the underlying physics by analyzing the 

quark diagrams in lattice QCD calculations

✓ 𝐷′ term is negligible.

✓ 𝐶2 term is responsible for the energy difference of 𝐷𝐷∗(𝐼 = 1)
and 𝐷𝐷∗(𝐼 = 0).

✓ 𝐶2 term can be understood as the exchange of charged 

vector 𝜌 meson, which provides attractive (repulsive) 

interaction for 𝐼 = 0 (𝐼 = 1)
✓ This is in qualitative agreement with phenomenological studies 

(Dong et al. CTP73 (2021) 125201,  Feijoo et al, 

PRD104(2021)114015)

𝒑𝐜𝐨𝐭 𝜹𝟎 𝒑 =
𝟏

𝒂𝟎
+
𝟏

𝟐
𝒓𝟎𝒑

𝟐 + 𝓞 𝒑𝟒

𝐼 = 0: attractive𝐼 = 1: repulsive

Schematic quark diagrams
11

B. Investigation of the isospin-dependent interaction of 𝐷𝐷∗ scattering 
(S. Chen et al., Phys. Lett. B 833, 137391 (2022) )



• (2+1)-flavor QCD on the 964 lattice with 𝑚𝜋 = 146.4 MeV, L=8.1 fm
• Calculate the correlation functions  

𝑅 Ԧ𝑟, 𝑡 = 𝑒 𝑚𝐷∗+𝑚𝐷 𝑡෍

Ԧ𝑥

0 𝐷∗ Ԧ𝑥 + Ԧ𝑟, 𝑡 𝐷 Ԧ𝑥, 𝑡 ҧ𝒥 0 0 =෍

𝑛

𝐴𝑛𝜓𝑛 Ԧ𝑟 𝑒−𝛥𝐸𝑛 𝑡 +⋯

• The function 𝑅(Ԧ𝑟, 𝑡) satisfies the Shrödinger-type equation
1 + 3𝛿2

8𝜇
𝜕𝑡
2 − 𝜕𝑡 − 𝐻0 +⋯ 𝑅 Ԧ𝑟, 𝑡 = න𝑑Ԧ𝑟′𝑈 Ԧ𝑟, Ԧ𝑟′ 𝑅 Ԧ𝑟, 𝑡 , 𝐻0 = −

𝛻2

2𝜇
, 𝜇 =

𝑚𝐷∗𝑚𝐷

𝑚𝐷∗ +𝑚𝐷
, 𝛿 =

𝑚𝐷∗ −𝑚𝐷

𝑚𝐷∗ +𝑚𝐷

• Takes the leading term of derivative expansion of the non-local 𝑈(Ԧ𝑟, Ԧ𝑟′)

𝑈 Ԧ𝑟, Ԧ𝑟′ ≈ 𝑉 Ԧ𝑟 𝛿 Ԧ𝑟 − Ԧ𝑟′ , 𝑉 𝑟 = 𝑅−1 Ԧ𝑟, 𝑡
1 + 3𝛿2

8𝜇
𝜕𝑡
2 − 𝜕𝑡 − 𝐻0 +⋯ 𝑅 Ԧ𝑟, 𝑡

• The 𝐷𝐷∗ potential in the 𝐼, 𝐽𝑃 = (0,1+) channel is attractive.

• Short range: attractive diquark-antidiquark (ത𝑢 ҧ𝑑 − 𝑐𝑐)
Long range: two-pion exchange is favored:

𝑉𝑓𝑖𝑡
𝐵 𝑟;𝑚𝜋 = σ𝑖=1,2𝑎𝑖𝑒

− Τ𝑟 𝑏𝑖
2
+ 𝑎3

1

𝑟
𝑒−𝑚𝜋𝑟

2
⋯

• Different from phenomenological expectation that 𝜌-exchange dominates?

C. Hadron-hadron interaction potential——HALQCD approach (Y. Lyu et al., arXiv:2302.04505 (hep-lat)) 
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Nambu-Bethe-Salpeter 

wave function



• Using the derived potential, the S-wave phase shifts 𝛿0 is 

obtained by solving the Schrödinger equation of 𝐷𝐷∗

system, which is put into the ERE

𝑝 cot 𝛿0 𝑝 =
1

𝑎0
+
1

2
𝑟0𝑝

2 + 𝒪 𝑝4

• Extrapolate to the physical 𝑚𝜋, 

𝑉𝑓𝑖𝑡
𝐵 𝑟;𝑚𝜋 → 𝑉𝑓𝑖𝑡

𝐵 𝑟;𝑚𝜋
phys

one gets

consistent with the large negative scattering length 𝑎0
of a bound state (𝑘 = 𝑖𝜅pole). 

• This result is consistent with the extrapolated 𝑎0 using the 

existing lattice results. 
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𝐴

𝐶

𝐵
𝐷

D: Y. Ikeda et al. (HALQCD)
Phys. Lett. B 729 (2014) 84-90



✓ The gray band: the theoretical obtained 

by using 𝑉𝑓𝑖𝑡
𝐵 (𝑟;𝑚𝜋) at 𝑚𝜋 = 146.4 MeV

✓ The red band: 𝐷0𝐷0𝜋+ mass spectrum 

obtained by chiral extrapolated 

𝑉𝑓𝑖𝑡
𝐵 (𝑟;𝑚𝜋) at 𝑚𝜋 = 135.0 MeV

✓ Consistent with the trend of evolution 

from a near-threshold virtual state into a 

loosely bound state. 
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• Fit to the 𝐷0𝐷0𝜋+ mass spectrum of LHCb

experimental data 

To summarize,

✓ The existing lattice results of 𝑇𝑐𝑐
+ 3875 relevant studies are consistent with each other;

✓ These results support the existence of a 𝐷𝐷∗ bound state in the 𝐼 = 0 channel.
✓ The interaction potential study (C）suggests that the two-pion exchange dominates the long 

range interaction, while study (B) supports the charged-𝜌 exchange that provides an 

attractive interaction for 𝐼 = 0 𝐷𝐷∗ system near the threshold, as expected by phenomenological

studies. 



• Static anti-heavy quarks 

• The 𝑟ത𝑏 ത𝑏 dependence of  the 𝐵𝐵 system defines the potential.

• The Schrödinger equation is solved to give the binding energy.

• A bound state exists in the 𝐼 𝐽𝑃 = 0 (0,1)+ channel 

𝐸𝐵 = −90−36
+43 MeV

and no binding in the 𝐼 𝐽𝑃 = 1 1+ channel.

(P. Bicudo et al. Phys. Rev. D 93 (2016) 034507)

• A bound state exists in the 𝐼 𝐽𝑃 = 0 1+ 𝐷𝐷∗ and 𝐷∗𝐷∗

coupled channel 

𝐸𝐵 = −59−38
+30 MeV

(P. Bicudo et al. Phys. Rev. D 95 (2017) 034502)
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2. Doubly bottomed counterpart  of 𝑇𝑐𝑐
+(3875)

A.  BB potential and ത𝑏ത𝑏𝑢𝑑 𝐼 𝐽𝑃 = 0 0+ tetraquark bound states using lattice QCD

𝐼 = 1 potential 

𝐼 = 0 potential 

B.  ത𝑏ത𝑏𝑢𝑑 𝐼 𝐽𝑃 = 0 0+ tetraquark bound state hinted by negative binding energy

P. Junnarkar et al., 

Phys. Rev. D 99, 034507 (2019)
• Chiral extrapolation

• Continuum extrapolation



• Calculate the NBS wave function to derive the potential 

of  𝐵𝐵∗ − 𝐵∗𝐵∗ coupled channel potential.

• Solve the Lippmann-Schwinger equation to get the 

scattering phase of the 𝐵𝐵∗ single channel.

• The linear chiral extrapolation of the binding energy in 𝑚𝜋
2

gives

𝐸𝐵
single

= −154.8 ± 17.2 MeV,

𝐸𝐵
couple

= −83.0 ± 10.2 MeV

• Corroborate the previous lattice results.
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2. Doubly bottomed counterpart  of 𝑇𝑐𝑐
+(3875)

C.  𝐵𝐵∗ − 𝐵∗𝐵∗ coupled channel potential and ത𝑏ത𝑏𝑢𝑑 𝐼 𝐽𝑃 = 0 1+ —HALQCD formalism

(S. Aoki and T. Aoki, PoS LATTICE2022, 049 (2023))



ത𝑏ത𝑏𝑢𝑠 1+

Blue: LQCD,  Green: Pheno.

• For the ത𝑏ത𝑏𝑢𝑑 0(1+) system, phase shifts 𝛿0(𝑘) are 

calculated at five 𝑚𝜋 values. 

All the cases give negative 𝐸𝐵, which are extrapolated

to the value at the physical 𝑚𝜋:

𝐸𝐵 = −128 ± 24 ± 10 MeV
(L. Leskovec et al. Phys. Rev. D 100 (2019) 014503)

• Clear evidence for a ത𝑏ത𝑏𝑢𝑠 1+ tetraquark:

𝐸𝐵 = −86 ± 22 ± 10 MeV
but strong discrepancies, even on the qualitive

level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

D.  ത𝑏ത𝑏𝑞𝑞′ (1+) systems explored in the Lellouch-Lüscher formalism

17

2. Doubly bottomed counterpart  of 𝑇𝑐𝑐
+(3875)

ത𝑏ത𝑏𝑢𝑑 1+



ത𝑏ത𝑏𝑢𝑠 1+

Blue: LQCD,  Green: Pheno.

• For the ത𝑏ത𝑏𝑢𝑑 0(1+) system, phase shifts 𝛿0(𝑘) are 

calculated at five 𝑚𝜋 values. 

All the cases give negative 𝐸𝐵, which are extrapolated

to the value at the physical 𝑚𝜋:

𝐸𝐵 = −128 ± 24 ± 10 MeV
(L. Leskovec et al. Phys. Rev. D 100 (2019) 014503)

• Clear evidence for a ത𝑏ത𝑏𝑢𝑠 1+ tetraquark:

𝐸𝐵 = −86 ± 22 ± 10 MeV
but strong discrepancies, even on the qualitive

level, between non-lattice results.

(S. Meinel et al. Phys. Rev. D 106 (2022) 034507)

D.  ത𝑏ത𝑏𝑞𝑞′ (1+) systems explored in the Lellouche-Luescher formalism
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2. Doubly bottomed counterpart  of 𝑇𝑐𝑐
+(3875)

ത𝑏ത𝑏𝑢𝑑 1+

To summarize: 

✓ All the existing lattice QCD studies indicate the existence of 𝑇𝑏𝑏 0 1+

✓ However, the predicted banding energy 𝐸𝐵 varys in the range −40 − −130 MeV . 

✓ The absolute value |𝐸𝐵| is quite larger than that of 𝑇𝑐𝑐
+ 3875 .



• LHCb observed several 𝑃𝑐 states in 𝐽/𝜓𝑝 final state 𝑃𝑐 4312 , 𝑃𝑐 4380 , 𝑃𝑐 4440 , 𝑃𝑐(4457)
which must have the minimal quark configuration 𝑢𝑢𝑑𝑐 ҧ𝑐.

• The 𝐽𝑃 =
1

2

−
Σ𝑐ഥ𝐷 and Σ𝑐ഥ𝐷

∗ scatterings are investigated via the Leuscher’s method:

✓ Points: 𝐸𝑛(𝐿)
Σ𝑐ഥ𝐷 (red) and Σ𝑐ഥ𝐷

∗(blue)

✓ Curves: Σ𝑐ഥ𝐷 and  Σ𝑐ഥ𝐷
∗

free energies.

𝑝 cot 𝛿0 𝑝(𝐸) =
2

𝐿 𝜋
𝒵00 1; 𝑞2(𝐸) 𝑝 cot 𝛿0 𝑝 =

1

𝑎0
+
1

2
𝑟𝑝2 (𝐸𝑅𝐸)

19

3. 𝑃𝑐 states and Σ𝑐𝐷(𝐷
∗) scatterings   (H. Xing et al., arXiv:2210.08555)

Σ𝑐ഥ𝐷 scattering

𝑃𝑐 4312 ?

Σ𝑐ഥ𝐷 scattering

𝑃𝑐 4440 ?

• Comment: The Τ𝐽 𝜓 𝑝 − Σ𝑐𝐷
∗ coupled channel effects have not been considered. They 

can be important, since 𝑃𝑐 states are observed in the Τ𝐽 𝜓 𝑝 invariant mass spectrum. 
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3. Dibaryon Ω𝑏𝑏𝑏Ω𝑏𝑏𝑏 from lattice QCD (N. Mathur et al., Phys. Rev. Lett. 130 (2023) 111901)

𝑘 cot𝛿0 = −
1

𝑎0
0
+ 𝑎0

1
𝑎Continuum extrapolation

𝑎0
0
= 0.18−0.02

+0.02 fm, 𝑎0
1
= −0.18−0.11

+0.18 fm2

Δ𝐸𝒟6𝑏 = −81−16
+14 MeV

𝑉𝑠 𝑟 :Multi-Gaussian

attrictive Potential

Radial

distribtuion
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III. Charmonium(like) states and their decays 

1. 𝐽𝑃𝐶 = 0,2 ++ charmoniumlike resonances in coupled 𝐷ഥ𝐷 and 𝐷𝑠ഥ𝐷𝑠 scattering

(S. Prelovsek et al., JHEP 06 (2021) 035)

• Relevant to X(3860), 𝑋 3930 and 𝑋(3915), which are near 𝐷ഥ𝐷 and 𝐷𝑠ഥ𝐷𝑠 thresholds. 

• The operator set includes ҧ𝑐𝑐 operators and (𝐷ഥ𝐷, 𝐷𝑠ഥ𝐷𝑠) operators with different relative momenta.

• Lellouche-Luescher formalism is implemented. 

✓ A 0++ shallow bound state (𝐸𝐵 ∼ −4 MeV) 

is observed right below the 𝐷ഥ𝐷 threshold.

✓ A narrow resonance appears just below 

the 𝐷𝑠ഥ𝐷𝑠 threshold, which may have 

connections with 𝜒𝑐0 3930 and 𝑋(3915)
✓ Consistent with the trend of evolution 

from a near-threshold virtual state into a 

loosely bound state. 

✓ The single channel analysis of 𝐿 = 2 𝐷ഥ𝐷
scattering find a 2++ resonance, whose 

properties are consistent with 𝜒𝑐2(3930).
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2. Decays of charmoniumlike 𝟏− + hybrid 𝜼𝒄𝟏 ( C. Shi et al., arXiv: 2306.12884 (hep-lat) )

• There exist candidates for light 𝟏−+ hybrids, such as 𝜋1(1600) and 𝜂1(1855).
• The charmonium like counterpart 𝜂𝑐1 of 𝜂1 is expected. Lattice QCD predicts 𝑚𝜂𝑐1 ∼ 4.2 − 4.4 GeV.

• Two body decay modes of 𝜂𝑐1: 𝐷1ഥ𝐷, 𝐷
∗ഥ𝐷, 𝐷∗ഥ𝐷∗, 𝜒𝑐1𝜂 𝜂′ , 𝜂𝑐𝜂 𝜂′ , 𝐽/𝜓𝜔(𝜙)

• The first lattice QCD calculation of the partial widths of these decays is presented. 

Lattice methodology ( C. McNeile & C. Michael, Phys. Lett. B 556 (2003) 177 ) 

෡𝑯 =
𝒎𝜼𝒄𝟏 𝒙

𝒙 𝑬𝑨𝑩

For the two-body decay 𝜂𝑐1 → 𝐴𝐵, in the space spanned by |𝜂𝑐1⟩ and 𝐴𝐵 (𝑚𝜂𝑐1 > 𝐸𝐴𝐵)

෡𝑻 𝒂 = 𝒆−𝒂
෡𝑯 = 𝒆−𝒂

ഥ𝑬 𝒆−𝒂𝚫/𝟐 𝒂𝒙
𝒂𝒙 𝒆𝒂𝚫/𝟐

ഥ𝑬 =
𝒎𝜼𝒄𝟏 + 𝑬𝑨𝑩

𝟐
, 𝚫 = 𝒎𝜼𝒄𝟏 − 𝑬𝑨𝑩

𝜼𝒄𝟏 =
𝟏

𝟎
𝑨𝑩 =

𝟎

𝟏

The transition takes place at any 𝑡′ between 0 and 𝑡: 
0𝑡 𝑡′

𝜼𝒄𝟏𝐴𝐵
𝑨𝑩 ෡𝑯 𝜼𝒄𝟏
= 𝒂𝒙

Ω 𝒪𝐴𝐵 𝜂𝑐1 ≈ 0 Ω 𝒪𝜂𝑐1 𝐴𝐵 ≈ 0

𝒞𝜂𝑐1,𝐴𝐵 𝑡

𝒞𝜂𝑐1 𝑡 𝒞𝐴 𝑡 𝒞𝐵 𝑡

→ −𝑎𝑥 𝑡 1 +
1

24
𝑎Δ 𝑡 2
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Amplitudes for 𝜼𝒄𝟏 → 𝑨𝑩 from the Lagrangian

𝓒𝜼𝒄𝟏,𝑨𝑩 𝒕

𝓒𝜼𝒄𝟏 𝒕 𝓒𝑨 𝒕 𝓒𝑩 𝒕

→ −(𝒂𝒙) 𝒕 𝟏 +
𝟏

𝟐𝟒
𝒂𝚫 𝒕 𝟐

L16 L24

Efffective couplings 𝑔𝐴𝐵 are derived as follows:
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The 𝑚𝜂𝑐1-dependence of partial decay widths

• For 𝑚𝜂𝑐1 = 4329(36) MeV, we have 

Γ𝐷1ഥ𝐷 = 258 133 MeV

Γ𝐷∗ഥ𝐷∗ = 150 118 MeV

Γ𝐷∗ഥ𝐷∗ = 88 18 MeV

Γ𝜒𝑐1𝜂 = sin2 𝜃 ⋅ 44 29 MeV

Γ𝜂𝑐𝜂′ = cos2 𝜃 ⋅ 0.93 77 MeV

• Given the mass above, 𝜂𝑐1 seems too wide to be

identified easily in experiments. 

• However, Γ𝜂𝑐1 is very sensitive to 𝑚𝜂𝑐1. 

• If 𝑚𝜂𝑐1 ∼ 4.2 GeV, then Γ𝜂𝑐1 ∼ 100 MeV.  

The dominant decay channels are 𝐷∗ഥ𝐷 and 𝐷∗ഥ𝐷∗. 

• Especially for 𝐷∗ഥ𝐷∗, the measurement of the 

polarization of 𝐷∗ and ഥ𝐷∗ will help distinguish a  

1−+ states from 1−− states.  

• It is suggested that  LHCb, BelleII and BESIII to search for 𝜂𝑐1 in 𝐷∗ഥ𝐷 and 𝐷∗ഥ𝐷∗ systems !  

𝑫∗ഥ𝑫∗
𝑪=+

𝑰=𝟎
=

𝟏

𝟐
𝑫∗+𝑫∗− + 𝑫𝟎∗ഥ𝑫𝟎∗

𝑳=𝟏

𝑺=𝟏

𝐿 + 𝑆 = even
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• 𝜂𝑐1 production on 𝑒+𝑒− collider 𝑒+𝑒− → 𝜓 𝑛𝑆 → 𝛾𝜂𝑐1 (𝜓 4415 𝑒𝑡𝑐. )

• 𝜂𝑐1 production in B meson decays (LHCb and Belle II)

𝐵 → ഥ𝐾𝑋, 𝑋 = 𝑋 3872 , 𝑍𝑐 4430 , 𝑍𝑐 3900 , 𝑒𝑡𝑐.

• 𝜂𝑐1 decay modes 

𝐴𝐵 𝐻𝐼 𝐻 ∝ න𝑑3 Ԧ𝑟 𝜙𝐻 Ԧ𝑟 ⋯ න
0

1

𝑑𝜉 cos(𝜉𝜋) 𝜙𝐴 𝜉 Ԧ𝑟 𝜙𝐵 1 − 𝜉 Ԧ𝑟

( P. Page et al., Phys. Rev. D 59 (1999) 034016)

Flux-tube model selection rules: 

1) Modes of two S-wave mesons are suppressed, SP-modes are favored. 

2) Modes of two identical mesons  are prohibited.  

But these rules for 𝜂𝑐1 decys are not supported by the lattice calculation.  



V.  Summary

• Lattice QCD makes a rapid progress in the study of heavy flavor spectroscopy. 

• Multiquark states are hot topics of lattice QCD studies. 

• The existing lattice QCD results relevant to 𝑇𝑐𝑐
+(3875) are consistent with each other 

and support the existence of a shallow 𝐷𝐷∗ 𝐼 = 0 bound state. 

• Similar studies are extended to the beauty counterpart 𝑇𝑏𝑏 of 𝑇𝑐𝑐, and suggest the existence 

of a (deeply) bound 𝐼 𝐽𝑃 = 0 1+ 𝐵𝐵∗ state.  

• A deeply bound dibaryon Ω𝑏𝑏𝑏Ω𝑏𝑏𝑏 is predicted.  

• There are also developments in the study of charmoniumlike resonance. 

• The decay properties of charmoniumlike hybrid 𝜂𝑐1 are predicted by lattice QCD. 

• More interesting works is underway. 
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Thank you for your Attention!


